科学技術と倫理の接点

一、はじめに——DNA情報系と脳の情報系

二、生命科学の展開

三、バイオテクノロジー

四、バイオテクノロジーと倫理と人類の未来

立木 教夫

69
この情報系は、DNA情報系と脳の情報系を包含し、生命が発生して以来、三十八万年もの時間を作って発展してきたものであり、そこにおける至高の命題は「どのように生きる」というものであった。これとは対照的に、今世紀の脳の情報系においては「よりよく生きる」という命題が追求されている。DNA情報系は、脳の情報系においては、生命を「観察」した段階であり、これはデカルト以前のことがある。そして、第三は、生命を「操作」する段階であり、これが現代に至るまでのしてきたことがある。
表1
遺伝子とDNAの関係

<table>
<thead>
<tr>
<th>U</th>
<th>C</th>
<th>A</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAU</td>
<td>メチオニン (Met)</td>
<td>GUA</td>
<td>フィラメント (Hel)</td>
</tr>
<tr>
<td>UCU</td>
<td>サルフィド (Ser)</td>
<td>UCC</td>
<td>サルフィド (Ser)</td>
</tr>
<tr>
<td>UCA</td>
<td>サルフィド (Ser)</td>
<td>UCG</td>
<td>サルフィド (Ser)</td>
</tr>
</tbody>
</table>

出典：松本正宏，「遺伝と情報」，岩波書店，1982年，159ページ。
第2図
制限酵素によるDNAの切断

科学技術と倫理の視点

一九七〇年代、大腸菌にファージDNAを導入する手法が発展し、大腸菌の遺伝子を操作する手段が提供された。この手法は、大腸菌のDNAを絵文字やプラスミドDNAなどを細胞に感染させるトランスフェクションによって、遺伝子の挿入が可能になった。この手法は、高濃度のDNAを精製することで、遺伝子の挿入が可能になった。

一九七四年、DNA組換え技術が完成した。スタッドフォード大学のコーエン（D.S.Keough）とポイヤー（E.D.Peyser）らは、大腸菌のDNAを絵文字やプラスミドDNAなどを細胞に感染させるトランスフェクションによって、遺伝子の挿入が可能になった。この手法は、高濃度のDNAを精製することで、遺伝子の挿入が可能になった。
現在組換えDNA実験で操作されているDNA断片の大きさは1この程度である。ある意味ではたいしたこととはいかといわれるかもしれないが、それに学問的・実験的に非常に大きな効果が見出されているのである。

① 遺伝子におけるネジノット（遺伝子）の研究が飛躍的に進展した。DNAの構造に関する研究が著しく進んだ。DNAの解体が可能となったため、遺伝子を人工的に挿入してゆくことができた。

② 遺伝子においては、DNAの塩基配列決定法が確立（九〇年代後半）され、遺伝子の一部をつなぎ合わせることのできることが可能となった。このような遺伝子の構造を計画的に変化させながらその発現を観察することができる。これによって、DNAが持っている情報内容を知ることができるようになった。

③ 高等生物の遺伝子DNAに関する新たな発見が記録されている。DNA技術は、物質+エネルギー+情報+系である。このようにして、生体は組換えDNA技術により遺伝子のクローンが可能になった。生体操作技術の中でも特に重要であるとされるのが、組換えDNA技術である。この組換えDNA技術は、物質+エネルギー+情報が組み合わさった生物の情報に操作する技術の代表である。
第3図
ヒトのβ-グロブリン遺伝子内の介在配列

出典、カールデライカ著、大野典也・藤多和信訳『遺伝子プログラムリング入門ーDNAと遺伝子クローニングの基礎知識ー』、154ページ。

第4図
分割遺伝子の読み取りとRANスプライシング

出典、カールデライカ著、大野典也・藤多和信訳『遺伝子プログラムリング入門ーDNAと遺伝子クローニングの基礎知識ー』、155ページ。
<table>
<thead>
<tr>
<th>番 号</th>
<th>パイプライン</th>
<th>DNA</th>
<th>RNA</th>
<th>蛋白質合成</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

日本における主なバイオエンジニアリング産業の現状と課題

出典：『日本バイオテクノロジー』編集会議編、日経BP社、1998年、123-133ページ。
ヒト成長ホルモン（IGF）は、脳下垂体前葉ホルモンの一種である。このホルモンが欠乏すると、下垂体機能不全症を生じ、成長遲延、骨格発育不良、筋力低下、皮膚乾燥、赤彩色変化など、様々な症状が見られる。特に、成長ホルモンの欠乏は、子供の発達が阻害され、成年の後半には、骨密度の低下、肥満、高血圧、糖尿病のリスクが高まることが知られている。

一方、IGF-1と成長ホルモンの両者が体に存在し、そのバランスが重要である。IGF-1は、成長ホルモンの刺激を受けて生成される成長分化因子で、成長ホルモンの役割を補完する役割を果たす。IGF-1が不足すると、成長ホルモンの効果が低下し、成長遅延を招く。

したがって、IGF-1の欠乏は、成長ホルモンの効果を阻害し、成長遅延を招く可能性がある。IGF-1の補充療法は、成長ホルモン欠乏症の治療に有効である。IGF-1の補充療法は、成長ホルモン欠乏症の治療に有効である。
科学技術と倫理の接点

オチャ・フォスフォリレイン（PNP）欠損症である。

一九八九年九月、アリカで、ガン患者から採取した細胞に遺伝子組換え操作を行い、目を覚まし、患者にも

そして、患者の健康を守るために、技術の応用が生産された。

A因子欠損症会は、NHIのブックス（NIH）とアングリッセ（NIH）から提出された。遺伝子治療の実験が行われている。

これらの技術を改善されているが、先天性の病気だけでなく、後天性の病気の治療においても、DNAの修正

や入れ換えが行われるようになるであろうと予測されている。

このほかにも、NHIは、一九九一年十一月二十九日に、末期皮膚が患者にたいする遺伝子治療を開始して

健康な場合の約二パーセントまで回復した。今後、順調にいえば、半年から一年後に免疫機能が回復し

るだろうと期待されている。

医学・薬学への応用としての細胞操作では、細胞融合によって、遺伝子が活性化され、効果が期待されている。

また、細胞間で、ガン細胞だけでなく、正常な細胞での融合が可能となり、生物医学の基礎研究はさらに進歩した。

動物細胞では、現在のところ、腫瘍細胞から個体を誘導することが可能である。ただし、細胞融合を応用することはできない。

しかし、細胞融合は、約十億個の細胞が働き、健康的に働く細胞を構成することができる。

モジュローナル抗体制の産生は次のようにある。目的とする抗原を免疫した動物の脾臓からB細胞（骨髄由来

細胞を取り出し、これにミエリン化細胞・骨髄細胞で強い免疫能力をもつものを混ぜてポリテシングリコ

ールを加えると融合細胞ができ、この中からB細胞とエリームマ細胞が融合したハイブリドーマを選び出

する。
科学技術と倫理の視点

科学技術と倫理の視点
科学技術と倫理の検点

母の分裂に伴い、「床下」として育てられる間にも、分裂が生じた。生産技術の進歩に伴い、このような分裂が生じてきている。

代母契約には、代理母の自由をどの程度拘束できるのかという、プライバシーを含むやさしい問題があろう。妊娠中には、飲酒や喫煙を控えていることから、運動は每日何時間かでいかたしかねる。したがって、子供が生まれるのを待っている。

主要な観点を考慮して、「子供の母」や、子宮の母との関係は何が許されるのであろうか。子供が生まれてから、自分の出生証明書や代理母に関する情報を見つける必要がある。自分たちの出生証明書は、結婚の役を果たすべきである。しかし、子供が生まれた後も、結婚の役を果たす必要がある。

医学と倫理の関係における組織の移動、医師の関与等があげられる。
科学技術と倫理の発展。

実現できなかった。

ところが、一九六八年十一月、アメリカの神経科学学会で、メキシコのマドリアのドゥー・コリンたちのチームが、一九八八年十一月に「科学技術と倫理の発展」で述べる患者の尾状核に「シャリ、パーキンソン病が非常によくなくなった」という事例を発表した。これに反対する、同チームは、一人一人の患者の手術成績を発表した。これからは、問題を解決すべきものであると考えている。

動物実験では、このほかにも様々な組織が試みられている。例の一つは、後述についても述べる。

マウス、ウサギ、スズメなどの組織が移植されるのでは、どのような組織でも移植されるのではないか。しかし、この組織は無理ではなくなる。カトリック教会の教皇、もしくは教会の聖職者たちも納得せず、教皇の命令で生命の保存を発表した。
表4 転植可能臓器と移植適応疾患

<table>
<thead>
<tr>
<th>番号</th>
<th>疾病</th>
<th>転植可能臓器</th>
<th>移植適応疾患</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>腎症</td>
<td>腎</td>
<td>新生児の腎代謝不良、急性腎不全、慢性腎不全、腎炎、腎結核</td>
</tr>
<tr>
<td>2</td>
<td>胰腺</td>
<td>胰</td>
<td>新生児の栄養不良、急性栄養不全、慢性栄養不全、栄養障害</td>
</tr>
<tr>
<td>3</td>
<td>肝</td>
<td>肝</td>
<td>新生児の栄養不良、急慢肝不全、慢性肝不全、肝炎、肝結核</td>
</tr>
<tr>
<td>4</td>
<td>胃</td>
<td>胃</td>
<td>新生児の栄養不良、急慢胃不全、慢性胃不全、胃炎、胃結核</td>
</tr>
</tbody>
</table>

出典: 厚生労災局編『第一回全国診療指導に関する懇談会』新星堂、1983年、34ページ

表5 人工臓器の現在

<table>
<thead>
<tr>
<th>番号</th>
<th>人工臓器</th>
<th>医療機器</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>人工血管・人工食道</td>
<td>人工気道・人工食道</td>
</tr>
<tr>
<td>2</td>
<td>人工心臓</td>
<td>人工心臓</td>
</tr>
<tr>
<td>3</td>
<td>人工肺</td>
<td>人工肺</td>
</tr>
</tbody>
</table>

出典: 厚生労災局編『第一回全国診療指導に関する懇談会』新星堂、1983年、108ページ
科学技術と倫理の双点

このように、科学技術の発展によっ
tて生じる倫理的問題は、事実にあら
たな解決策を見つけることが求めら
tれる。特に、医療機器の発達による
医療の進歩と、これに伴う倫理的問題
の認識が急募されている。これらを
解くためには、科学技術の発展と倫理
の二つの視点から総合的な検討を
行うことが必要である。
科学技術と倫理の検点

《○○○○年代》

女性生殖に対する多細胞生物の複製

人間の生命の延長、代謝の強化による生命の延長

不老・人工的に繁殖操作をすること（低温保存）によって、理論的にはある種の不老が可能となるであろう

脳の利用・身体から切り離された脳を人工雑種に十数てないの予測

新しい種の創造

植物細胞と動物細胞の結合

人間の身体の一部・例えば四肢の自生再生

ここに予測されている生命体の操作における自由度の拡大は、目覚ましいものがあ

医学・薬学の領域で開発されているさまざまな生命体の操作技術を見えた

遺伝子コピーダNAと呼ばれる技術は、それがDNAを、それをとるのシステムと共に、適宜に操作をしてい

① 农業

a. DNA操作

b. 遺伝子操作

c. コピーダNA操作

② 农作物の改良、家畜の改良

人類の食糧を確保・供給するという問題との関係から論議されている

農作物の改良、家畜の改良は、人類の食糧を確保・供給するという問題との関係から論議されている。
科学技術と倫理の視点

現在、生物技術の進歩により、植物に新機能を持たせることが可能になりつつある。これにより、栽培作物の安全性を向上させることが可能になった。しかし、この技術が未熟な場合、環境に与える影響を考慮することが必要となる。

一方で、アミノ酸の構成やタンパク質の組み立てにより、作物のレベルが向上している。これにより、作物の品質や収穫量を向上させることが可能になった。しかし、このような技術の利用により、環境影響を考慮することが必要となる。

これらのことから、科学技術の利用が正しいかどうかを判断するためには、技術の利用の背景や目的を考慮することが必要である。
科学技術と倫理の視点

増殖があり、一九九〇年のことであった。植物体がウイルスに感染したとしても、成長できずその付近はウイルスに感染している。

そこで、植物体がウイルスに感染したとしても、成長できずその付近はウイルスに感染している。
科学技術と倫理の接点

一九八五年より本格的普及がはかられている。

最近、初期胚移植を始め、進歩しており、初期胚の分裂胚数に大きな問題がでている。現在のところ、四分裂初期胚の移植で、幼生四胞胎をつくるのに成功しているが、生まれた牛は普通の牛と異なる。小牛が少ないことがある。反面、小牛の片方が生後間もなく死ぬとされるが、これは非常に珍しい。

① 胚製造への応用
生物エネルギーの利用による胚胎製造、進化栄養などが考えられている。

② 合子産業
化製品生産について、発酵産物をはじめ、養殖技術を積極的に研究されている。

③ 基因操作
DNA操作
用いられる。
科学技術と倫理の視点

なかったが、有限ということになる。そうはいかない。情報〜科学技術を限界で駆使する場合、ある結果がすぐに原因となって次の結果を生み出していくという非線形現象を十分に考えているわけではない。科学系の安定性がよくすれば、地球で生命活動が可能になった生命体は絶滅危惧に陥ることになるか、そういない。ここにあるバイオテクノロジーがあらわれたこの事実を理解すると、生命系の問題を提起している理由は存在する。

以上、このバイオテクノロジーはの不 Nimbus と呼ばれるバイオテクノロジーは、あきらめが危険だから消滅してしまう。バイオテクノロジーは生命の知識を持って、人間のために役立てる、いわば生物体の価値観が生体を使い、というような縮小を理解し、バイオテクノロジーの内容がどうなればならないか、人類と呼ばれる生物の共存をバイオテクノロジーに鍵となると考えられている。この場合、問題は発生する。わわれの両立もできないから、倫理の問題を生み出し、ますます我々の生存を脅かすという。

（この）パリオテクノロジーの本義は生命世界を豊かにするということがある。言いたいのです。バイオテクノロジーは生命の知識を、人間のために役立てる、いわば生物体の価値観が生体を使い、というような縮小を理解し、バイオテクノロジーの内容がどうなればならないか、人類と呼ばれる生物の共存をバイオテクノロジーに鍵となると考えられている。この場合、問題は発生する。わわれの両立もできないから、倫理の問題を生み出し、ますます我々の生存を脅かすという。

この実体を、生命系の安定性の問題を提起している理由は存在する。生命系が安定すれば、地球で生命活動が可能になった生命体は絶滅危惧に陥ることになるか、そういない。ここにあるバイオテクノロジーがあらわれたこの事実を理解すると、生命系の問題を提起している理由は存在する。

以上、このバイオテクノロジーはの不 Nimbus と呼ばれるバイオテクノロジーは、あきらめが危険だから消滅してしまう。バイオテクノロジーは生命の知識を持って、人間のために役立てる、いわば生物体の価値観が生体を使い、というような縮小を理解し、バイオテクノロジーの内容がどうなればならないか、人類と呼ばれる生物の共存をバイオテクノロジーに鍵となると考えられている。この場合、問題は発生する。わわれの両立もできないから、倫理の問題を生み出し、ますます我々の生存を脅かすという。

この実体を、生命系の安定性の問題を提起している理由は存在する。生命系が安定すれば、地球で生命活動が可能になった生命体は絶滅危惧に陥ることになるか、そういない。ここにあるバイオテクノロジーがあらわれたこの事実を理解すると、生命系の問題を提起している理由は存在する。

以上、このバイオテクノロジーはの不 Nimbus と呼ばれるバイオテクノロジーは、あきらめが危険だから消滅してしまう。バイオテクノロジーは生命の知識を持って、人間のために役立てる、いわば生物体の価値観が生体を使い、というような縮小を理解し、バイオテクノロジーの内容がどうなればならないか、人類と呼ばれる生物の共存をバイオテクノロジーに鍵となると考えられている。この場合、問題は発生する。わわれの両立もできないから、倫理の問題を生み出し、ますます我々の生存を脅かすという。
科学研究と倫理の検点

（注）

（1）名取俊「遺伝子技術と健康」
（2）渡辺浩「生物情報を社会科学と人」
（3）渡辺浩「科学の歴史的定位」
（4）伊東俊太郎「バイオテクノロジーの歴史的定位」
（5）岡田篤人「生命体の操作」
（6）阿部信夫「生命科学の操作」
（7）伊東俊太郎「バイオテクノロジーの歴史的定位」

本稿執筆に際し、長野県立女性大学の小山高明講師に手数を要請した。ここに記して感謝の意を表しております。